ABSTRACT

The ability to measure the current density in a toroidal magnetic confinement plasma experiment with a
spatial resolution of order 1 cm and a temporal resolution of 1 us will be invaluable to stability and
transport studies. In an axisymmetric plasma, canonical angular momentum conservation constrains
heavy ion beam probe (HIBP) trajectories such that measurement of the toroidal velocity component of
secondary ions provides a localized determination of the poloidal flux at the location where those ions
originated. The poloidal flux can be used to determine the current density profile. We have developed a
prototype detector which is designed to measure the beam angle in one dimension through measurement
of currents landing on two planes of detecting elements. A set of front entrance apertures creates a pattern
of beam current on wires in the first plane and solid metal plates behind them in the second plane; the
relative amount detected by the wires and plates determines the angle which beam ions enter the detector,
which is used to infer the toroidal velocity component. The design evolved from a series of simulations
within which we modeled HIBP velocity changes due to equilibrium and fluctuating magnetic fields, the
effect of the ion beam profile and velocity dispersion, and optimized the size of and spacing between wires
within a grid and between the two grids. The model predicts the ion beam image and the currents
measured by the detector elements. From these simulations, we have estimated the sensitivity of the
velocity detector to the equilibrium and fluctuating poloidal flux of the plasma.
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e The prototype was installed in the MST-HIBP primary beam line

- Located approximately 31.5 cm from the outer surface of MST
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MODELING OF THE VELOCITY-DETECTOR

o Allows use of toroidal cross-over steering system to change
HIBP VELOCITY-DETECTOR PROTOTYPE
CODES DEVELOPED TO DESIGN THE VELOCITY-DETECTOR ARE ALSO . . . .
Toroidal Trajectory (Looking down on beam line from outboard towards core)
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Current measured by each impact grid wire and split-plate

- Was independently converted to a voltage via a 10’
trans-impedance amplifier

o Was independently digitized at 1 MHz

o Had a electronic noise level of approximately 0.25 nA RMS
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MEASUREMENTS OF ION BEAM ANGLE AND VELOCITY
HAVE BEEN SUCCESSFULLY ACQUIRED

e Measurements being acquired in primary beam line
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e Goals of velocity-detector modeling e Key simulated components are e Code outputs

- Currents on
o Aperture-wires
o Grid-wires
o Split-plates
- These currents determine
o OQutput beam angle
o Weighted position of beam

" Xeff = 2 (Xwirelwire) /2 (Twire)

- Drive hardware design

- Include physical effects of real
components

- Include effects due to a realistic
beam current profile

- Estimate sensitivity and dynamic
range

- Work as a virtual diagnostic that can
be compared with measurements

- Velocity-detector
o Aperture-wires and grid-wires
= Size & spacing (d)
» Displacement (/)
= Cross-section
- Incoming ions
o Current density profile
o Input beam angle (§)
o Incoming position
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- Provides low-noise measurement of beam current
- Can use steering system to vary velocity

MOTIVATION

e Advance capabilities of the HIBP to o
- Measure the poloidal magnetic flux
- Infer evolution of the current density profile
- Characterize magnetic fluctuations
- Constrain magnetic equilibrium reconstructions

Measurements are made by

Develop a detector capable of measuring ion
beam velocity without the use of an energy
analyzer

- Advantages include reduced size, cost, and
complexity of diagnostic

- Varying beam position

o Determine ion beam current profile
- Varying beam angle

o Measure ion beam velocity
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Beam Ion Current

Simulated current density intersecting the aperture-wires, MEASUREMENTS AND SIMULATION RESULTS AGREE
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= Using the measured ion beam profile are in agreement with data

Beam position (mm) - Explore the differences between equilibrium conditions




